M.Theiss - Hard- and Software for Optical Spectroscopy
Home Products Applications Support News

Dielectric function database

Analyzing optical spectra by simulation (which is the main task of the SCOUT software and related programs) requires as input the optical constants of all materials in the system. The tedious work to create appropriate dielectric function data can be shortened by using the pre-defined data given in this dielectric function database.

The present collection of dielectric functions splits up into two groups: fixed data sets and dielectric function models. Both are explained shortly in the following. Fixed data sets can be used for those materials which definitely are stable, well known and not varying in composition from sample to sample. In those cases where one has to assume variations of the optical constants from sample to sample the use of models is necessary with a variation (fit) of those parameters that may change.

Fixed data sets

Fixed data sets are tables of the real and imaginary part of the dielectric function given in a certain spectral range. Most of the data are obtained from literature somehow (by typing in or scanning published table values or digitizing published curves). Some have been obtained from more or less direct evaluation of measured spectra (like KKR analysis of reflectivity data or spectroscopic ellipsometry).

If you import fixed data sets from the database and you use them for a computation the spectral range of the spectrum to be computed must not be identical to that of the fixed data set. Like in all SCOUT objects linear interpolation is applied to obtain dielectric function values in between two specified spectral positions of the dielectric functin object. In case of extrapolation the dielectric function values of the closest specified spectral point are used - this means that you should avoid extrapolation unless the dielectric function is almost constant.

Dielectric funciton models

Dielectric function models are much more flexible compared to fixed data sets. You can freely change the spectral range, in particular you can start with a coarse 'data point grid' for a rough calculation and switch later on to a fine mesh of spectral points. The greatest advantage of models is that you can adjust the model parameters to fit simulated spectra to measured ones. This way you can account for variations of optical constants which may happen due to differences in your samples. Good examples are varying carrier concentrations in doped semiconductors or concentration differences of a component in a composite material.

 

Current entries in the database

Here are the short names of the materials and the spectral ranges for which dielectric functions are available in the database:

(Al(0,0)Ga(1,0))0.5 In(0.5)P 0.225 ... 1 micron
(Al(0,1)Ga(0,9))0.5 In(0.5)P 0.225 ... 1 micron
(Al(0,3)Ga(0,7))0.5 In(0.5)P 0.225 ... 1 micron
(Al(0,6)Ga(0,4))0.5 In(0.5)P 0.225 ... 1 micron
(Al(0,7)Ga(0,3))0.5 In(0.5)P 0.225 ... 1 micron
(Al(1,0)Ga(0,0))0.5 In(0.5)P 0.225 ... 1 micron
Ag (JC) 0.3 ... 1 micron
Ag (Johnson & Christy) 6000 ... 50000 1/cm
Ag (MQ) 0.28 ... 1 micron
Ag (Palik) 0.6 ... 6.6 eV
Ag (SOPRA) 0.6 ... 6.6 eV
Ag model 2000 ... 50000 1/cm
Ag [micron] 0.3 ... 1 micron
Ag2_S1 0.3 ... 0.598 micron
Ag2_S2 0.3 ... 0.598 micron
Al 0.5 ... 6.75 eV
Al [micron] 0.3 ... 1 micron
Al(0,1)Ga(0,9)As 1.5 ... 6 eV
Al(0,2)Ga(0,8)As 1.5 ... 6 eV
Al(0,32)Ga(0,68)As 1.5 ... 6 eV
Al(0,42)Ga(0,58)As 1.5 ... 6 eV
Al(0,49)Ga(0,51)As 1.5 ... 6 eV
Al(0,59)Ga(0,41)As 1.5 ... 6 eV
Al(0,7)Ga(0,3)As 1.5 ... 6 eV
Al(0,8)Ga(0,2)As 1.5 ... 6 eV
Al-Cu 0.3 ... 0.899 micron
Al2O3 0.3 ... 1 micron
Al2O3 (Palik) 0.5 ... 6 eV
AlAs 0.5 ... 5.6 eV
AlAs (Aspnes, Bhat) 0.5 ... 5.6 eV
AlAs (T=125 °C) 1.255 ... 4.495 eV
AlAs (T=152 °C) 1.255 ... 4.495 eV
AlAs (T=178 °C) 1.255 ... 4.495 eV
AlAs (T=204 °C) 1.255 ... 4.495 eV
AlAs (T=228 °C) 1.255 ... 4.495 eV
AlAs (T=28 °C) 1.255 ... 4.495 eV
AlAs (T=305 °C) 1.255 ... 4.495 eV
AlAs (T=331 °C) 1.255 ... 4.495 eV
AlAs (T=361 °C) 1.255 ... 4.495 eV
AlAs (T=390 °C) 1.255 ... 4.495 eV
AlAs (T=421 °C) 1.255 ... 4.495 eV
AlAs (T=445 °C) 1.255 ... 4.495 eV
AlAs (T=469 °C) 1.255 ... 4.495 eV
AlAs (T=499 °C) 1.255 ... 4.495 eV
AlAs (T=52 °C) 1.255 ... 4.495 eV
AlAs (T=527 °C) 1.255 ... 4.495 eV
AlAs (T=552 °C) 1.255 ... 4.495 eV
AlAs (T=578 °C) 1.255 ... 4.495 eV
AlAs (T=602 °C) 1.255 ... 4.495 eV
AlAs (T=626 °C) 1.255 ... 4.495 eV
AlAs (T=72 °C) 1.255 ... 4.495 eV
AlAs (T=98 °C) 1.255 ... 4.495 eV
AlCu 0.25 ... 0.9 micron
AlN (sputtered) IR model 400 ... 5000 1/cm
AlON 0.5 ... 3.1 eV
AlSb 0.5 ... 5.8 eV
AlSi 0.25 ... 0.8 micron
AlSiTi 0.25 ... 0.8 micron
Au 0.5 ... 6 eV
Au (J. & C., L. & H.) 1008 ... 49954.1 1/cm
Au (JC) 0.301 ... 1 micron
Au (MQ) 0.28 ... 1 micron
Au [micron] 0.3 ... 1 micron
BaF2 0.2 ... 2 micron
BaTi03 9000 ... 50000 1/cm
C 0.3 ... 1 micron
C (amorph) 0.3 ... 0.838 micron
C (amorphous) Sopra 0.3 ... 0.84 micron
C (Diamond) 0.5 ... 5.8 eV
C 60 0.3 ... 1 micron
CaF2 1 ... 6.5 eV
CCl4 0.25 ... 0.9 micron
Cd 0.3 ... 0.69 micron
CdS 0.105 ... 0.805 micron
CdSe 0.3 ... 1 micron
CdSe (Palik) 0.5 ... 6.5 eV
CdTe 0.3 ... 1 micron
CdTe (Palik) 0.5 ... 5 eV
CdTe (Toshifumi) 1.1 ... 5.4 eV
Co 0.3 ... 0.899 micron
Co (hexagon thin films) 0.65 ... 6.6 eV
Co (Sopra) 0.25 ... 0.9 micron
CoSi2 1 ... 4.8 eV
Cr 0.3 ... 1 micron
Cr (Lynch) 1 ... 6 eV
Cr KKR 1 ... 150000 1/cm
Cr KKR 220 1 ... 150000 1/cm
Cr2O3 0.3 ... 1 micron
Cr5Si3 0.1 ... 5.9 eV
CrSi2 11 ... 23.1 eV
CrSi3 0.1 ... 5.9 eV
Cu 0.3 ... 1 micron
Cu (JC) 0.301 ... 1 micron
Cu (Palik) 0.5 ... 6.5 eV
Cu2O 0.3 ... 1 micron
Cu2O (Palik) 0.5 ... 4.2 eV
CuO 0.3 ... 1 micron
CuO (Palik) 0.5 ... 4.2 eV
Epoxy (insulating) 750 ... 4800 1/cm
Fe (JC) 0.3 ... 1 micron
Fe2O3 0.3 ... 1 micron
FeSi2 (VIS/UV) 0.2 ... 5 eV
FeSi2 / first part VUV 4.5 ... 9 eV
FeSi2 / second part VUV 11 ... 23.1 eV
GaAs 13000 ... 47000 1/cm
GaAs (103 °C) 1.24 ... 4.495 eV
GaAs (126 °C) 1.24 ... 4.495 eV
GaAs (150 °C) 1.24 ... 4.495 eV
GaAs (175 °C) 1.24 ... 4.495 eV
GaAs (199 °C) 1.24 ... 4.495 eV
GaAs (224 °C) 1.24 ... 4.495 eV
GaAs (249 °C) 1.24 ... 4.495 eV
GaAs (273 °C) 1.24 ... 4.495 eV
GaAs (297 °C) 1.24 ... 4.495 eV
GaAs (31 °C) 1.24 ... 4.495 eV
GaAs (320 °C) 1.24 ... 4.495 eV
GaAs (344 °C) 1.24 ... 4.495 eV
GaAs (367 °C) 1.24 ... 4.495 eV
GaAs (391 °C) 1.24 ... 4.495 eV
GaAs (41 °C) 1.24 ... 4.495 eV
GaAs (415 °C) 1.24 ... 4.495 eV
GaAs (443 °C) 1.24 ... 4.495 eV
GaAs (465 °C) 1.24 ... 4.495 eV
GaAs (488 °C) 1.24 ... 4.495 eV
GaAs (515 °C) 1.24 ... 4.495 eV
GaAs (546 °C) 1.24 ... 4.495 eV
GaAs (579 °C) 1.24 ... 4.495 eV
GaAs (60 °C) 1.24 ... 4.495 eV
GaAs (603 °C) 1.24 ... 4.495 eV
GaAs (634 °C) 1.24 ... 4.495 eV
GaAs (81 °C) 1.24 ... 4.495 eV
GaAs (Aspnes, Bhat) 0.5 ... 6 eV
GaAs (infrared model) 100 ... 500 1/cm
GaAs <100> 0.234 ... 0.84 micron
GaAs <111> 0.234 ... 0.84 micron
GaAs oxide 13000 ... 47000 1/cm
GaAsO 1 ... 6 eV
GaP 13000 ... 47000 1/cm
GaP (Jellison) 0.5 ... 6 eV
GaP <100> 0.234 ... 0.84 micron
GaPO 1.6 ... 6 eV
GaSb 13000 ... 47000 1/cm
GaSb (Jellsion) 1.25 ... 6 eV
GaSbO 1.6 ... 6 eV
Ge 0.3 ... 1 micron
Ge (Jellison) 0.5 ... 6 eV
Ge <100> 0.234 ... 0.84 micron
Ge, amorphous 13000 ... 47000 1/cm
Ge, crystalline 13000 ... 47000 1/cm
GeOx 13000 ... 47000 1/cm
Glass (KKR) 0 ... 150000 1/cm
Glass (microscope slide), IR 50 ... 5000 1/cm
Glass (microscope slide), Vis 9000 ... 50000 1/cm
Glass Type 7059 0.25 ... 0.85 micron
Glass Type 7059 Corning 0.44 ... 0.65 micron
Glass Type BK7 1 ... 6.5 eV
Glass Type LASF9 1 ... 5.9 eV
Glass Type SF11 1 ... 5.9 eV
Graphite 13000 ... 47000 1/cm
HfO2 0.25 ... 0.9 micron
HfSi2 0.05 ... 9.5 eV
Hg(.71)Cd(.29)Te 13000 ... 47000 1/cm
Hg(.80)Cd(.20)Te 13000 ... 47000 1/cm
HgTe 13000 ... 47000 1/cm
HMDS 1000 ... 2000 1/cm
HY 41 1 ... 100000 1/cm
In(.53)Ga(.47)As 13000 ... 47000 1/cm
In(0.1)Ga(0.9)As (relaxed) 0.24 ... 0.84 micron
In(0.1)Ga(0.9)As (strained) 0.24 ... 0.84 micron
In(0.1)Ga(0.9)Sb 0.225 ... 0.825 micron
In(0.2)Ga(0.8)As (relaxed) 1.3 ... 5.1 eV
In(0.2)Ga(0.8)As (strained) 0.24 ... 0.84 micron
In(0.24)Ga(0.76)As (relaxed) 1.5 ... 5 eV
In(0.24)Ga(0.76)As (strained) 0.24 ... 0.84 micron
In(0.3)Ga(0.7)Sb 0.225 ... 0.825 micron
In(0.5)Ga(0.5)Sb 0.225 ... 0.825 micron
In(0.7)Ga(0.3)Sb 0.225 ... 0.825 micron
In(0.9)Ga(0.1)Sb 0.225 ... 0.825 micron
InAs 13000 ... 47000 1/cm
InAs (Jellison) 1 ... 6 eV
InAsO 1.6 ... 6 eV
InP 0.3 ... 1 micron
InP (Jellison) 0.5 ... 6 eV
InPO 1.6 ... 6 eV
InSb 0.3 ... 1 micron
InSb (Jellison) 1 ... 6 eV
InSbO 1.6 ... 6 eV
Ir 0.3 ... 1 micron
Ir3Si5 / first part 0.6 ... 5.5 eV
Ir3Si5 / second part 4.1 ... 8.2 eV
ITO 0.3 ... 0.848 micron
ITO (Jellison) 0.25 ... 0.85 micron
K 0.3 ... 1 micron
KCl 0.3 ... 1 micron
KCl (Jellison) 0.5 ... 6 eV
Li 1.05 ... 6.75 eV
LiF 0.5 ... 6 eV
Mo 0.5 ... 6.5 eV
MoSi2 / parallel 1 ... 4.4 eV
MoSi2 / perpendicular 1 ... 4.4 eV
Na 0.3 ... 1 micron
NaCl 0.25 ... 1 micron
NbSi2 / parallel 0.05 ... 6 eV
NbSi2 / perpendicular 0.05 ... 6 eV
Ni 0.3 ... 1 micron
Ni (Jellison) 0.5 ... 6.5 eV
Ni2Si 0.1 ... 5.8 eV
Ni3Si 0.1 ... 5.8 eV
NiSi 0.1 ... 5.8 eV
Os 0.5 ... 6.5 eV
Pb 0.3 ... 0.69 micron
PbS 0.5 ... 6.2 eV
PbSe 1 ... 6 eV
Pd 0.3 ... 1 micron
Pd (Jellison) 0.5 ... 6.5 eV
Pd2Si / parallel 0.1 ... 7 eV
Pd2Si / perpendicular 0.1 ... 7 eV
Photoresist 800 ... 4000 1/cm
PLX 4000 ... 30000 1/cm
PMMA 0.316 ... 1 micron
Poly-carbonate 9000 ... 35000 1/cm
Poly-styrole 0.3 ... 1 micron
Pt 0.3 ... 1 micron
Pt (Jellison) 0.5 ... 6 eV
Pt model 9000 ... 50000 1/cm
RB 41 1 ... 100000 1/cm
ReSi1.75 0.1 ... 12 eV
Rh 0.5 ... 6 eV
Ru 13000 ... 47000 1/cm
Si (<100>) 0.23 ... 0.84 micron
Si (<110>) 0.23 ... 0.84 micron
Si (<111>) 0.23 ... 0.84 micron
Si (amorphous I) 0.6 ... 6 eV
Si (amorphous II) 1 ... 6 eV
Si (amorphous III) 0.24 ... 0.84 micron
Si (amorphous IV) 0.3 ... 1 micron
Si (amorphous V) 0.3 ... 0.838 micron
Si (amorphous VI) 13000 ... 47000 1/cm
Si (As doped) 0.24 ... 0.84 micron
Si (Aspnes) 13000 ... 47000 1/cm
Si (cryst.) 0.3 ... 1 micron
Si (crystalline, MIR-VUV) 0.5 ... 7.6 eV
Si (crystalline,T=100 °C) 1.5 ... 4.7 eV
Si (crystalline,T=150 °C) 1.5 ... 4.7 eV
Si (crystalline,T=20 °C) 1.5 ... 4.7 eV
Si (crystalline,T=200 °C) 1.5 ... 4.7 eV
Si (crystalline,T=250 °C) 1.5 ... 4.7 eV
Si (crystalline,T=300 °C) 1.5 ... 4.7 eV
Si (crystalline,T=350 °C) 1.5 ... 4.7 eV
Si (crystalline,T=400 °C) 1.5 ... 4.7 eV
Si (crystalline,T=450 °C) 1.5 ... 4.7 eV
Si (fine grain poly-cryst.) 1 ... 5.9 eV
Si (heavily doped (Aspnes)) 13000 ... 47000 1/cm
Si (in porous silicon, fresh) 600 ... 2300 1/cm
Si (infrared) 500 ... 1500 1/cm
Si (poly-cryst.) 0.3 ... 1 micron
Si (porous (Jellison)) 1 ... 5.9 eV
Si (simple IR model) 500 ... 5000 1/cm
Si (Vis/UV, Brendel model) 9000 ... 50000 1/cm
Si(0.09)Ge(0.91) relaxed 1.7 ... 5.6 eV
Si(0.11)Ge(0.89) 0.24 ... 0.84 micron
Si(0.17)Ge(0.83) relaxed 1.7 ... 5.6 eV
Si(0.20)Ge(0.80) 0.24 ... 0.84 micron
Si(0.25)Ge(0.75) relaxed 1.7 ... 5.6 eV
Si(0.28)Ge(0.78) 0.24 ... 0.84 micron
Si(0.36)Ge(0.64) relaxed 1.7 ... 5.6 eV
Si(0.49)Ge(0.51) relaxed 1.7 ... 5.6 eV
Si(0.61)Ge(0.31) relaxed 1.7 ... 5.6 eV
Si(0.65)Ge(0.35) 0.24 ... 0.84 micron
Si(0.77)Ge(0.23) strained 2 ... 4.5 eV
Si(0.78)Ge(0.22) relaxed 1.7 ... 5.6 eV
Si(0.83)Ge(0.17) strained 2 ... 4.5 eV
Si(0.85)Ge(0.15) 0.24 ... 0.84 micron
Si(0.88)Ge(0.12) strained 2 ... 4.5 eV
Si(0.94)Ge(0.06) strained 2 ... 4.5 eV
Si(0.98)Ge(0.02) 0.24 ... 0.84 micron
Si(1)Ge(0) relaxed 0.5 ... 7.6 eV
Si3N4 1 ... 8 eV
SiAs (p-doped) 0.24 ... 0.84 micron
SiC (MIR) 500 ... 1500 1/cm
SiC (NIR-UV) 0.19 ... 1.25 micron
SiC (simple infrared model) 500 ... 1500 1/cm
SiGe on Ge 0.24 ... 0.84 micron
SiGe on Si 0.24 ... 0.84 micron
SiO 0.3 ... 1 micron
SiO I 0.6 ... 5.9 eV
SiO II 0.65 ... 6.5 eV
SiO III 0.3 ... 1 micron
SiO(0.2)N(0.8) 0.25 ... 0.8 micron
SiO(0.4)N(0.6) 0.25 ... 0.8 micron
SiO(0.6)N(0.4) 0.25 ... 0.8 micron
SiO(0.8)N(0.2) 0.25 ... 0.8 micron
SiO2 (fused) 13000 ... 47000 1/cm
SiO2 (MIR-VUV) 0.6 ... 7.6 eV
SiO2 glass 400 ... 2300 1/cm
SiO2 [micron] 0.3 ... 1 micron
SiONO 0.25 ... 0.8 micron
Ta 0.3 ... 1 micron
Ta (Jellison) 0.18 ... 2.48 micron
Ta2O3 0.3 ... 0.848 micron
Ta2O3 (Jellison) 0.25 ... 0.85 micron
Ta2O5 0.3 ... 0.848 micron
Ta2O5 (Jellison) 0.3 ... 0.85 micron
TaSi2 / parallel 0.05 ... 10 eV
TaSi2 / perpendicular 0.05 ... 10 eV
Test Oxide I 0 ... 150000 1/cm
Test Oxide II 0 ... 150000 1/cm
Text Oxide II 0 ... 150000 1/cm
ThF4 0.65 ... 5.6 eV
Ti 0.3 ... 1 micron
Ti (Jellison) 1 ... 6 eV
TiN 0.25 ... 0.9 micron
TiO2 (amorph) 0.3 ... 1 micron
TiO2 I (Jellison) 0.18 ... 1.5 micron
TiO2 II (Jellison) 0.22 ... 2.42 micron
TiSi2 0.1 ... 19.5 eV
V 0.5 ... 6 eV
VSi2 / parallel 0.05 ... 4.9 eV
VSi2 / perpendicular 0.05 ... 4.9 eV
W 0.5 ... 6.5 eV
Water 13000 ... 47000 1/cm
Water (IR) 400 ... 4000 1/cm
Water (Vis) 0.3 ... 1 micron
Y 0.042 ... 5.1 micron
Y2O3 0.094 ... 2.9 micron
Y2O3 (Jellison) 0.5 ... 6 eV
Zn 0.4 ... 1 micron
Zn(0.1)Cd(0.9)Te 1.1 ... 5.4 eV
Zn(0.3)Cd(0.7)Te 1.1 ... 5.4 eV
Zn(0.5)Cd(0.5)Te 1.1 ... 5.4 eV
Zn(0.7)Cd(0.3)Te 1.1 ... 5.4 eV
Zn(0.9)Cd(0.1)Te 1.1 ... 5.4 eV
ZnO 0.49 ... 0.675 micron
ZnS cub 0.3 ... 1 micron
ZnSe 0.3 ... 1 micron
ZnSe (Jellison) 1 ... 6.5 eV
ZnSe (Ozaki) 0.7 ... 6.3 eV
ZnSe(0.1)Te(0.9) 0.7 ... 6.3 eV
ZnSe(0.3)Te(0.7) 0.7 ... 6.3 eV
ZnSe(0.5)Te(0.5) 0.7 ... 6.3 eV
ZnSe(0.7)Te(0.3) 0.7 ... 6.3 eV
ZnSe(0.9)Te(0.1) 0.7 ... 6.3 eV
ZnTe 1.1 ... 5.4 eV
ZnTe (Ozaki) 0.7 ... 6.3 eV
ZrO2 0.25 ... 0.85 micron
ZrSi2 1.8 ... 3 eV


Responsible for this page: webmaster@mtheiss.com